Smoothing and Estimation Derivatives of Equispaced Data

نویسندگان

  • J. J. Casaletto
  • John R. Rice
چکیده

This paper discusses various aspects of the smoothing and estimation of derivatives of equispaced data. The background for least squares polynomial smoothing is summarized . The various alternatives for programs in a computing center ' s library are discussed and a part icular alternative is selected as most sui table. An algorithm named SMOOTH is given [in Fortran) which implements this al ternat ive. SMOOTH estimates the smoothed value of the data or its first or second derivative based on specified polynomial degree and nunber of points to enter the smoothing . The paper concludes wi th a discussion of methods sui table to compute large arrays of smoothing weights . There are 3 appendices which contain , respect ively , expl ici t formulas associated wi th Gram polynomials, expl icit formulas for the smoothing weights and tables of initial segments of arrays for computing large tables of smoothing weights .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-step Smoothing Estimation of the Time-variant Parameter with Application to Temperature Data

‎In this article‎, ‎we develop two nonparametric smoothing estimators for parameter of a time-variant parametric model‎. ‎This parameter can be from any parametric family or from any parametric or semi-parametric regression model‎. ‎Estimation is based on a two-step procedure‎, ‎in which we first get the raw estimate of the parameter at a set of disjoint time...

متن کامل

Estimating Derivatives for Samples of Sparsely Observed Functions, with Application to On-line Auction Dynamics

It is often of interest to recover derivatives of a sample of random functions from sparse and noise-contaminated measurements, especially when the dynamics of underlying processes is of interest. We propose a novel approach based on estimating derivatives of eigenfunctions and expansions of random functions into their eigenfunctions to obtain a representation for derivatives. In combination wi...

متن کامل

Automatic Smoothing With Wavelets for a Wide Class of Distributions

Wavelet-based denoising techniques are well suited to estimate spatially inhomogeneous signals. Waveshrink (Donoho and Johnstone) assumes independent Gaussian errors and equispaced sampling of the signal. Various articles have relaxed some of these assumptions, but a systematic generalization to distributions such as Poisson, binomial, or Bernoulli is missing. We consider a unifying l1-penalize...

متن کامل

A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION

This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...

متن کامل

Kernel Estimator and Bandwidth Selection for Density and its Derivatives

In statistics, the univariate kernel density estimation (KDE) is a non-parametric way to estimate the probability density function f(x) of a random variable X, is a fundamental data smoothing problem where inferences about the population are made, based on a finite data sample. This techniques are widely used in various inference procedures such as signal processing, data mining and econometric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013